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Nonequilibrium stationary microstructures in surface chemical reactions
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Adsorbates with attractive lateral interactions between molecules in the presence of adsorption and thermal
desorption are considered. We show that a sufficiently strong nonequilibrium reaction or the process of
photoinduced desorption can destabilize uniform stationary phases of the adsorbates and lead to nonequilib-
rium microstructures whose wavelength is typically shorter than the diffusion length and may hence be on the
micrometer to nanometer scale. Despite their small sizes, such microstructures are not destroyed by internal
statistical fluctuationqd.51063-651X98)03511-9

PACS numbes): 82.20.Mj, 47.54+r, 68.10.Jy, 82.65.Jv

I. INTRODUCTION resent “equilibrium reactions” which are not themselves
able to induce the formation of kinetic spatially modulated

Catalytic chemical reactions in adsorbates on metal surstationary phases. For polymer blends, such special behavior
faces are an important and intensively investigated class aif equilibrium chemical reactions has been noted in the dis-
nonequilibrium physicochemical systeffrld. Application of  cussion[14].
photoelectron emission microscopEEM) has led to the Thus, an interesting and previously not addressed ques-
discovery of a rich variety of spatiotemporal patterns in thesgion is what would happen if, in addition to adsorption and
systems, including traveling or rotating spiral waves and turthermal desorption, the considered system includes an irre-
bulence[2]. The characteristic length scales of such patterngersible nonequilibrium surface chemical reaction.
lay in the range of tens of micrometers, whereas the diffusion The theoretical analysis of kinetic processes in systems
length of the mobile surface species was aboptiand the  ndergoing a first-order phase transition is usually performed
lattice constant was _of order 16 um. _Therefore,_ all these_ in the framework of the Cahn-Hilliard equati¢h5,16. This
patterns were effectively macroscopic and their propertiegqation represents a local approximation that is valid when
could well be described by the classical reaction-diffusione a4iys of interactions between the particles is much
models neglecting fluctuations and interactions between thghorter than all characteristic length scales of emerging spa-

molecules{3]. The recent devel.opment of the fast scanningy; ) patterns. Interactions between adsorbed molecules on
probe, however, makes it possible to study surface reactions

with an atomic resolutiofid]. Moreover, the high-resolution metal surfaces are often mediated through the substrate by
PEEM is coming up and wbuld soon éllow one to image thechemisorption—induced modulation of the local electronic
reaction patterns on the submicrometer scale structure[17] or by chemisorption-induced elastic stresses

Nonequilibrium spatiotemporal patterns on scales shorter:8] @nd may therefore extend over relatively long distances.
than the diffusion length may result from the interplay of On the other hand, _the characterlst_lc diffusion lengths of
reactions and attractive potential interactions between adsof®Me adsorbed species may be relatively short and therefore
bate moleculeg5,6]. Indeed, short-scale transient patternsnot strongly different from the radius of interactions between
develop at the initial stage of the phase separation procegsisorbed particles. In such situations, the approaches based
[7,8]. It is known that nonequilibrium reactions can freezeon the Cahn-Hilliard equation are not applicable and a non-
these transient patterns and thus lead to the emergence letal kinetic description is needed.
stationary microscopic patterns in binary mixtures, such as We have recently proposd&] and then directly derived
polymer blendg9-11]. It has earlier been suggestgtl?]  from the underlying microscopic master equati@8] a non-
that adsorption and thermal desorption processes can hal@al mesoscopic kinetic equation for the adsorbates that ex-
similar effects in the adsorbates with attractive interactionglicitly takes into account lateral potential interactions be-
between particles. However, our theoretical analysis of suckween the particles. We have also shown how internal
systemq 13] has shown that adsorption and thermal desorpfluctuations can be incorporated into this description by add-
tion do not lead to the development of stationary microstrucing internal noises into the nonlocal kinetic equatidr3].
tures. Instead the system always evolves to a state of therm@ihe small parameter used in the derivation is the inverse
equilibrium characterized by uniform adsorbate coverage. number of surface lattice sites in the area with the interaction

Adsorption and thermal desorption correspond to ex+adius. Hence, this mean-field kinetic equation with fluctua-
change of particles between the surface and a large gas re®ns is generally applicable when attractive interactions ex-
ervoir that form together a closed system. This system mugend over many lattice lengths. A similar nonlocal equation
therefore relax to a state of thermal equilibrium that cannotithout fluctuating terms has recently been independently
depend on any pureliinetic properties of the system. Con- constructed for binary alloys in the limit of long-range inter-
sequently, microstructures with the period dependent on thactions[19]. The novel mesoscopic nonlocal kinetic equation
diffusion constants of adsorbed particles are not possible ihas already been usgti3] to describe the nucleation kinetics
such closed systems. Adsorption and thermal desorption repf equilibrium phase transitions in adsorbates in the presence
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of adsorption and desorption processes far from the critical'he first term describes the rate of adsorption determined by

point of the phase transition. the initial sticking coefficienk,, the partial pressure of the
The aim of this study is to theoretically investigate thegaseous specigs,, and the fraction of the surface being

influence of irreversible nonequilibrium surface chemical re-adsorbate-free, 4£c. In the following termsky is the de-

actions on phase transitions in adsorbates in the presence sdrption rate constank, is the reaction rate constari, is

adsorption and thermal desorption processes. We show th#fe molecular diffusion constant for the adsorbate, &irid

in these systems strong enough nonequilibrium reactions cahe temperature. The local surface potentiglr), experi-

induce the formation of stationary microstructures with theenced by adsorbed molecules, is caused by lateral pairwise

wavelengths lying in the submicrometer and nanoscalattractive interactions and is given by the integral

range. Our analysis is based on the mesoscopic kinetic equa-

tion. This allows us to study the effects of interactions with a

finite radius and investigate the influence of fluctuations in U(r)= _J u(r—r’)c(r’)dr’. @

such reactive adsorbates.

In Sec. Il we formulate a mesoscopic kinetic equation forthe rate constant for desorption can then be written as
the considered systems and compare this approach with other

kinetic descriptions based on the Cahn-Hilliard equation. ky=Kg o eXHU(r)/KsT] 3)
The linear stability analysis of the uniform adsorbate phases ’ ’
is performed in Sec. lll. Its results are used to constrquherekdo is its value in the absence of interactions

bifurcation diagrams for the considered system and discuss Equation(1) includes a term that describes viscous flow

the parameter dependence of the critical wavelength. Thgf the adsorbate induced by the potential gradient. As a

nonlmea_\r stage of the m_stablhty and the morpho_logy Qf the imple approximation for the interaction potential, we
developing stationary microstructures are then investigate hoose the Gaussian profile

by numerical simulations in Sec. IV. In Sec. V possible ex-
perimental realizations of the considered nonequilibrium mi-

_ 2 2.2
crostructures are discussed. u(r)=(uo/mro)exp —r/rg), @

whereu, specifies the interaction strength arglis the in-
teraction radius.
As an example, we consider a system with a single kind The first-order reaction model underlying E@) can ac-
of molecule that adsorbs on, desorbs from, and diffusiveifually represent a bimolecular reaction where the second spe-
moves across a solid surface. These molecules exhibit paig¢ies reacts directly from the gas pha&sey-Rideal mecha-
wise attractive interactions and are subject to a first-ordefism). Another possible realization of this reaction is a
nonequilibrium chemical reaction whose product immedi-process of photoinduced desorptiee further discussion in
ately leaves the surface. This system is descrilsed[13])  Sec. V. In both cases the reaction is nonequilibrium since
by the following mesoscopic kinetic equation for the local energy is brought with photons or molecules of the second
coveragec of adsorbed molecules: species that hit the surface. Therefore, the reaction rate con-
stantk, does not depend, in contrast to the thermal desorp-
au(r) tion rate constant, on the local potential for the adsorbed
ar particles.
The random termé(r,t) in Eqg. (1) combines internal
(1) noises of reaction, adsorption, desorption, and diffusion pro-
cesses:

Il. THE MESOSCOPIC KINETIC EQUATION

&C_k 1 k k iy 1
=t~ KaPo(1—€)—kgc—kc+ - kB_T( —c)c

+D(9ZC+ t
Sz HEID.

1 1 1
Er)=sm Vkapo(1—c)fA(r,t)+ > Vka o€ expU(r)/2kgT)fo(r,t)+ > Jk.c f,(r,t)

1 9
+Z—1,§E{\/2Dc(1—c)f(r,t)}, (5)

where the random forceg(r,t), fq(r,t), f.(r,t), andf(r,t) averaging(coarse graining has been performed in R¢1L3]
represent independent white noises of unit intensity, so thdisee also the general discussion of mesoscopic stochastic
(Fa(r,)fo(r' 1))y = (fa(r,t)fo(r',t")) = (f (r,t)f (r',t")) equationg20,21]). The parameteZ in Eqg. (5) is given by

= (f(r, ) f(r )y =(f (r, ) (r' 1)) =8(r—r') 8(t—t’) the number of lattice sites per unit surface area, so that the
and(f,f,)=0. The derivation of the stochastic mesoscopicatomic lattice length ido=2"*% A small parameter em-
equation(1) with internal noise5) from the respective full ployed in this derivation isé=(r3z) %, i.e., the inverse

microscopic master equation on a lattice, employing partiahumber of lattice sites inside an area of the interaction ra-
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FIG. 1. Bifurcation diagrams in the parameter plaag) for (a)
B=0 (no reaction, (b) 5=0.05,(c) 8=0.162, andd) 8=0.5. The

dashed line shqws t_he instgbility boundaries with respect_ to periOdi‘équation for the considered system,
spatial modulation in the limity<L,. In the marked regions the

system hagl) single uniform phasd]l) single spatially modulated
phase(lll) two uniform phases(|V) one uniform low-density and
one spatially modulated phas@/) one uniform high-density and
one spatially modulated phase, af\d) two different stable spa-
tially modulated nonequilibrium phases.

dius. The conditions<1 implies thatry>1,, i.e., that the

NONEQUILIBRIUM STATIONARY MICROSTRUCTURES . ..

5485
where

De(c)=D[1—ec(1—c)], G(c)=3Der3c(1-c).

8

It can also be written in the equivalent form
(9C_ N Jd M d OF 9
o~ QO * 5 (MO 5 sc(r))’ ©

where
Flc]=| | —%ec?+cInc+(1—c)In(1—c)

11012 & 2 d 10
7€l ar r, (10

Q(c)=kapo(1—c)—kqo exn( - g) c—kee, (1D
B

andM(c)=Dc(1-c).

Equation (9) represents the local Cahn-Hilliard kinetic
including additional
terms to account for adsorption, desorption, and reaction pro-
cesses. Note that the dependence of the coeffitleon the
coveragec can only be neglected if coverage variations in
considered patterns are small, i.e., the patterns have small
amplitudes.

Near the critical point =4 of the equilibrium phase tran-
sition, decomposition in powers of small deviations from the

interaction radius o should be much larger than the atomic critical coveragec=0.5 can be performed here. Retaining

lattice length.

only the leading terms, this yields the Landau free-energy

In the absence of the reaction, the considered system hdignctional:

an equilibrium first-order phase transitif®?]. Then, its sta-

tionary uniform states are given by the roots of the equation

a(l—c)=exp —ecC)c,

(6)

where the notations=uq/kgT anda=Kk,py/kq o have been

d

2
W) }dr, (12)

E[c]=i—“—%(s—4>¢2+;—‘¢“+ré

where ¢=c—0.5. Puttingc=0.5 in the kinetic coefficient

introduced. This is the standard mean-field equation of al¥(C), the approximate Cahn-Hi_IIiarq equation in the vicin-
adsorption isothernicf. [22]). Inside the cusp region of the Ity Of the pointe =4 is thus obtained:

parameter plangFig. 1(a)], the system is bistable: both high-
and low-density uniform adsorbate phases are possible. The

critical point of this equilibrium phase transitian,=0.5 is
located ate=4 and Ina=—2.

2

ic J (5 )

Before the analysis of pattern formation phenomena, de- The Cahn-Hilliard equation in the ford3) with the Lan-
scribed by this model, we want to discuss its relation to thedau free energy12) has first been applied by Hubermgir6]
other approaches for the description of reacting systems witip describe the influence of chemical reactions on systems
first-order phase transitions, based on the Cahn-Hilliardvith phase transitions. The approaches based on the Cahn-

equation.

Assuming that the coveragsr,t) does not significantly
vary within the distances about the interaction radiysnd
neglecting fluctuations, the integro-differential equatian
can be approximateths shown in Ref[13]) by the follow-
ing local kinetic equation:

ac UgC
E=kapo(1—c)—kd,o exp — KT c—k,c

Jc d%c
+ Des(C) 5)—— (G(c) —)

or

Hilliard equation were later employed in theoretical studies
on phase separation phenomena in polymer blends with
chemical reactiong9,10]. The polymer blends were modeled
as simple binary mixtures with componertandB and the
reactionsA— B (with the rate constarlf;) and A~ B (with

the rate constarif',) were taken into account. The reaction
rate constants were not influenced by interactions between
moleculesA andB, responsible for the phase transition, and
hence only nonequilibriunte.g., optically inducedreactions
were considered. Assuming the incompressibility condition
ca+cg=1, the reaction part of the kinetic equatitiB) had

in this case the form
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Q(c)=T,—(I';+T,)c, (14)  Cahn-Hilliard equation(13) yields steady statetsee[12])
whose propertieslependon the diffusion constant and that

where the notatioe=c, is employed. The rate constants of cannot, therefore, correspond to the true thermal equilibrium.
the forward and backward reactions were taken eqlial (  Apparently, since the Cahn-Hilliard equation is based on
=I',=T) by Glotzeret al. [9], who have used the Cahn- the mean-field approximation, it is consistent only with the
Hilliard equation in the forn(9) with the free-energy func- expressions for the adsorption and desorption rates that are
tional (10). Motoyama and Ohtf10] have subsequently in- derived in the same mean—field_ approximation. Indeed, in our
vestigated the nonsymmetric casel';¢T,) in the study[13] we have ;hown that if the monomolecular thermal
framework of the Cahn-Hilliard approach, using in their nu-desorption is described by the classical coverage-dependent
merical simulations a simple model form for the free energydesorption rate constait=kgy o exp(—unc/ksT) obtained in
and performing their analytical investigation for the Landauthe mean-field approximatiotsee, e.g.[22]), the system
free energy(12). In both these studies the kinetic coefficient always relaxes to the state of thermal equilibrium with only
M(c) in the Cahn-Hilliard equatio9) was taken constant. Uniform adsorbate phases. From our point of view, the theo-

The adsorbates can also be formally viewed as binaryetical results of Ref{12] may apply, therefore, only to the
mixtures if the adsorbed molecules are considered as pafituations where the associative desorption is not thermal,
ticles A and the empty sites as fictitious particRsCompar- ~ but externally induced. o .
ing Eqg. (14) with Eq. (11), we see that the results of the ~ Thus, we see that previous investigations do not yield
studies[9,10] can also be applied to reactive adsorbates witdesults applicable in situations where both thermal desorption
short interaction radii in the absence of thermal desorptior@"d nonequilibrium reactions are present and are influencing
(kq0=0), provided the coverage in the considered patternéhe adsorbate phase transition. Moreover, since they were
is weakly varying around a certain mean level. base_d on the Cahn—H|II|ard equation, thelr results are not

Verdascaet al.[12] have used the Cahn-Hilliard equation @Pplicable when the interaction radius is comparable with
(13) with the Landau free energl2) to study adsorbates characteristic length scales of the appearing patterns. Our
with first-order phase transitions in the presence of adsorganalysis of the problem is performed in the next sections in
tion and associative desorption processes. These procesdBg framework of the mesoscopic kinetic equatian
were taken into account by choosing

) =k.po(1— ) — kyC2, 15 lll. LINEAR STABILITY ANALYSIS
Q&)= Habal 176) 7 ( AND BIFURCATION DIAGRAMS

where the first term described adsorption and the second Tg analyze instabilities leading to the formation of non-

term (with a constant coefficierkty) corresponded to the as- equilibrium stationary microstructures and to determine bi-
sociative desorption process. furcation boundaries in the parameter space of the system,

However, if thermal desorption is considered, the desorpye first consider in this section its deterministic limit, ne-
tion rate ConStankd must depend on the local potential. In- g|ecting noise terms in the kinetic equaticn_/)_ The station-

deed, the particles leaving the surface must overcome a cegry uniform states of the system are given by the roots of the
tain potential barrier that is modulated by the local potentialequation

due to the interactions between these adsorbed particles. In
the subsequent discussion, Verdastal. have pointed out
[23] that the experimental data for thermal desorption often a(l—c)— Bc=exp —ec)c, (16)
show deviations from the mean-field results and therefore
Eq. (15 with constant coefficients may, perhaps, still be
used as a phenomenological description of adsorption andhere we have additionally introduced the dimensionless re-
desorption processes. action rate constanB=Kk, /kypy. Without the reaction g

The choice of an expression for the thermal desorptior=0), it reduces to the mean-field equation of an adsorption
rate cannot be arbitrary. There are two different situationgsotherm that describes a first-order phase transition in the
involving adsorption and thermal desorption. On one handadsorbat¢22]. Inside the cusp region, whose boundaries are
these processes can take place in an open reactor. On thleown by the bold line in Fig.(8), the system is bistable:
other hand, adsorption and thermal desorption can simplpoth dense and dilute uniform adsorbate phases are possible.
correspond to reversible exchange of particles between a sumntroduction of the nonequilibrium monomolecular reaction
face and a gas reservoir in a closed system. The partial pregiodifies the phase diagram: As the dimensionless reaction
sure in the gas phase can be constant in both of these situgte constang increases, the cusp shifts to higher values of
tions, if the pumping rate in the open reactor is high or if thethe dimensionless interaction strength=uy/kgT and
gas reservoir is large in the closed system. It is important thasmaller values of the dimensionless relative adsorption rate
both situations are described by exactly the same kinetice=Kk,po/Kq o [See Figs. (b)—1(d)]. The critical point is lo-
equation for the adsorbate and therefore the behavior of theated at* =4(1+ 8) anda* =(1+ 8) “le ?; the coverage
adsorbate should be the same in both cases. But a closatithis point isc* =[2(1+ )] 1.
system must relax to the state of thermodynamic equilibrium The stability of uniform states is tested by adding small
whose properties cannot depend on any kinetic coefficientqerturbations sc(x,t) = éc exp(yt)expixx) in the one-
such as the diffusion constant of adsorbed particles on thdimensional system. Linearizing the kinetic equatidp we
surface. If, however, the rate of thernfaksociativiedesorp-  find that the increment of growth of these perturbations is
tion is phenomenologically chosen in the for(h5), the given by
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Y= —kKaPo— ki +kgo(ec—1)e"**~Dx[1-&c(1—c)] +kgo(ec—1)e *¢ must be negative. This state will, how-
2 s ever, be unstable with respect to nonuniform, spatially
—[kgosce *°+Dr2ec(1—c)](1—e "™, (17)  modulated perturbations with sufficiently large wave num-
) bersk>vy,._o/Des(c) if the effective diffusion coefficient
We see thaty, is always real and the unstable modes are nobeﬁ(c)zD[l—ec(l—c)] is negative. Thus, the instability
oscillatory. The situation is similar to the classic Turing in- 5 \ndaries are determined in the limit—0 by the equation
stal_)ility in act_ivator-inhibitor systems: Theldispers'mpha_s D.(c)=0 together with Eq(16). Note that the solution of
a single maximum at a wave numbfe_dg which chgnges Its D#(c)=0 yields then the coveragg at the respective insta-
sign at the instability, i.e., the stability boundaries and theoility boundary that should be substituted into E20).
wave num_beko of the first unstable mode are determined by = 11,0 computed instability boundaries in the parameter
the conditions thaty, =0 anddy,/dx=0 atx=ko. plane(a,e) at different values of the dimensionless relative
Using Eq.(17), the wave numbek, of the first unstable  eaction rate constang=k, /k,p, in the limit ro—0 are
spatial mode is determined as shown in Fig. 1. In the absence of the reactig=0) the
system has one stable uniform state in the redipand two

KZZL — i2+ iz uniform stable states in the region Il inside the cyBm.
0 1_C0 Ld 2LI’ 1(a)]
2 12 As gis increasedFig. 1(b)], the instability first develops
X| =1+ 1+ —=(1— Co)) “ (18  atthe cusp boundari¢s the regions IV and Yand near the
o critical point (in the region I). The system remains, how-

i . ) ever, in the stable uniform phase in region | and has two
Two dlffer?nt diffusion lengths are introduced her&tq  giaple uniform phases in the region Iil. Note that in the re-
:(D,/kd,o)1.2 expecy/2) is the diffusion length of adsorbed gign |V the system has a stable uniform low-density phase,
partlcleslygn_th respect to their thermal desorption, while  \yhereas the uniform high-density phase is unstable with re-
=(D/k;)™* is their diffusion length with respect to the non- spect to nonuniform perturbations. The situation is opposite
equilibrium first-order chemical reaction. The paramelgr i, the very narrow region V, where the uniform high-density
is the coverage in the uniform state at the respective instgshase is stable and the uniform low-density phase is unstable
bility boundary. and develops spatial modulation. In region VI both uniform
It follows from Eq. (18) that the wave numbek, van-  phases are unstable with respect to periodic spatial modula-
ishes and therefore the wavelength=27/«kq of the first  tjgn.
unstable mode diverges when the interaction radyisp- When the reaction rate is increased, the bifurcation dia-
proaches a critical value, given by equation gram undergoes a significant chariég. 1(c)]. The region
V disappears and the region Il extends to the domain of high
(19 values. of the parameter specifying the relative_intensity o]‘
attractive lateral interactions. If the reaction is further in-
) ) ) ) ) creased, the dashed boundary of the region Il moves in the
Whenro>r, Eq.(18) yields x;<0, implying that the in-  rjgnt direction and we have eventually a situation where the
stability is then absent. On the other hand, when the charagnstapility with respect to spatial modulation is present in a
teristic radius of the lateral interactions is small as comparecparge part of the parameter plafigig. 1(d)], even far from
with both characteristic diffusion lengths, i.e., if the condi- the cusp region.
tionsro<L, andro<Lj/L, are satisfied, the wavelength of  As noted in the Introduction, the radius of lateral interac-
the first unstable mode can be approximately estimated usingons in adsorbates can be relatively large, especially if these
Eq. (18) as interactions are mediated through elastic deformations in the
metal substrate. Therefore, evolution of the bifurcation dia-
No=2"2m(1=co) (ol ™ (20 grams under an increase in the interaction radius should be
(This result might also be obtained using the Cahn-Hilliarg"vestigated. To illustrate the effects of nonlocal interactions,

approximation. It agrees with the respective estimate derive© show how typlca_ll_blfurcatlon dle}grams n the parameter
using the Cahn-Hilliard kinetic equation in Rd8] for the plane (B,e) are modified when the interaction radius is in-
reactive binary mixtures, such as polymer blepd$wus, the creased.

critical wavelength would generally lie in this limit between h Le; us first ;:or?&derl, (;"S a smple_e())(amele, thg szstem n

the radiusr g of lateral interactions and the diffusion length the absence of therma esorpt_ldq,yf,—__ ). Figure - SNOWS

L in this case the family of the instability boundaries of the
r

heHniform state in the planég,s) for different values of the
h dimensionless radiupg=ry/L,. The uniform state is un-
stable with respect to periodic spatial modulations inside the
regions bounded by these curves. The lowest curve corre-
sponds to the limitpy— 0. As the interaction radius is in-
creased, the instability region moves upwards to higher val-
Y= Yeeo— DK 1—ec(1—c)]. (21)  ues of the effective interaction strength Therefore, if we
fix ¢ and increaseg, the interval of 8 values where the
If a uniform steady state with the coveragis stable with  uniform phase is unstable will shrink until at a critical value
respect to uniform perturbations, 7y,.-o=—Kipo—Kk; of pg the two instability boundaries merge and for larggr

The instability boundaries can easily be determined w
the interaction radiusg is much shorter than the wavelengt
of the first unstable modes. ihxk—0, the last term on the
right-hand side of Eq.17) can be neglected angl, is simply
given by
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regions Il and VI are already absent. Furthermore, since the
stability boundary for the high-density phaséne dashed
curve has moved towards its existence bounddhe right
solid curvg, a new region Ill has appeared. Finally, upon
further increasingg, the unstable region IV of the dense
phase shrinks until it eventually also disappdafsFig. 3d)

The evolution of the stationary microstructures under an
increase of the interaction radius can also be followed by
looking at the respective dependence of the wavelengtbf
the first unstable mode, generally determined by @®).
When the effective interaction strength is chosen below the
critical cusp point(i.e., e<e*), we have two instability
boundaries and, therefore, two different wavelengths. The

41 ] typical dependence of these wavelengths on the dimension-
0 4 8 B less interaction radius is shown in Figat We see that, as
a certain critical interaction radidsorresponding to merging

FIG. 2. Bifurcation diagram in the parameter plaige) in the  Of these two boundaries and disappearance of the instability
absence of thermal desorptiokyo=0) for several different values at a givene) is approached, the wavelengths of the two un-
of the dimensionless interaction radiusp,=0 (solid curve, pg stable modes come closer and meet while remaining finite. It
=0.1 (dashed, py=0.5 (dot-dashej] and p,=1.0 (long-dashed should be noted that the critical value @f corresponding to
curve). Inside the regions bounded by these curves, a single, spahe merging point is always smaller than its critical value for
tially modulated phase is found at the respective valuepf  the divergence of the characteristic wavelength given by Eq.
Outside of these regions the system has a single stable unifori9).
phase. The development is different when the parameteis

fixed above the critical poiri.e., e >¢*) [Fig. 4(b)]. In this
the instability is absent for any values gf This follows Case, only a single stability boundagnd hence a single
from the fact that the nonlocal terms contributing to thewavelength of the first unstable mgdis associated with
growth rate in Eq(17) all have negative signs, i.e., they have €ach of the uniform phases. These wavelengths increase with
a stabilizing effect on the uniform phase. the interaction radius for both phases. They diverge, going to

In the presence of strong enough thermal desorption, thifinity as A= (pc—po)*?, when the dimensionless interac-
situation is more complex. When the desorption rate constariton radius reaches the critical valups given by Eq.(19).
exceedsy o= e’k, , the system can have two coexisting uni- Thus, close t@, the appearing modulated structures would
form phases. In the plan@,e) the critical point of this tran- ~ represent macroscopic patterns. Note that the divergence of
sition is located at B*=[e %kgo/k,—1]"% and takes place when the stability boundary for a given uniform
g* =4(1+ B*). Figure 3 shows bifurcation diagrams in this phase hits the corresponding existence boundary. Therefore
p|ane forkd,O: 50([ and different values of the dimension- the value Oto in Eq (19) for the critical interaction radius is
less interaction radiugy. Similar to the diagrams shown in
Fig. 1, they include the cusp region where the system has 1
two uniform states stable with respect to uniform perturba- C°:2(1—+B)
tions. The boundaries of this region are determined by Eq.
(16) and do not depend on the interaction radius. However,
the boundaries of the instabilities with respect to nonunifornmHere the signst+ and — correspond to the low- and high-
perturbationgshown by dashed curves in Fig) 8re sensi- density uniform phases, respectively.
tive to variations of the interaction radius. Together with the We have shown additionally by thin solid and dashed
cusp, these boundaries determine regions | to VI, which areurves in Figs. &) and 4b) the dependences of the critical
labeled here in the same way as in Fig. 1. wavelengths yielded by the approximatig0) that is

When the interaction radius is very smaile., po—0),  equivalent to using the Cahn-Hilliard kinetic equation. Gen-
the diagram[Fig. 3(@)] includes a relatively wide region Il erally, this approximation is good only for very small inter-
where the system has only one spatially modulated phasection radii. However, as seen from Fig@ay it correctly
Additionally, however, inside the cusp regions IV and VI areyields the wavelength of the first unstable mode below the
found where the system has two uniform phases and eitheritical cusp point at lower reaction rate constants almost up
one or both of them are unstable with respect to the periodito the moment when the two boundaries merge and the in-
modulation. If we now start to increase the interaction radiusstability disappears at a critical interaction radius.
the instability boundariesi.e., the dashed curvebegin to Our bifurcation diagrams have been constructed in this
move in the directions indicated by arrows in Fig. 3. Whensection by a linear stability analysis of the uniform steady
po=0.1[Fig. 3b)], the unstable region Il shifts upwards and states. Therefore, they only show the boundaries where these
becomes more narrogef. Fig. 2. Moreover, inside the cusp uniform states become unstable and the growth of spatially
region the stability boundary of the low-density uniform nonuniform modes begins. The nonlinear stage of such insta-
phase nearly merges with its existence boundary, so that réilities and the properties of developing nonlinear stationary
gion VI has almost disappeared. At=0.17 [Fig. 3(c)], patterns are numerically analyzed in Sec. IV.
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FIG. 3. Bifurcation diagrams in the parameter plgfe) for ky o/k,=50. The solid curves show the boundaries of the region where two
uniform states, both stable with respect to uniform perturbations, are present. The instability boundaries of uniform phases with respect to
periodic spatial modulation are shown by dashed curves at several different values of the dimensionless interactioria@gelius0, (b)
po=0.1,(c) pp=0.17, and(d) py=0.23.

IV. NUMERICAL SIMULATIONS In two-dimensional systems, the instabilities lead to the

The behavior of the system has been followed in numeri_development of spatial patterns that tend to approach a peri-

cal simulations. In the one-dimensional system, we havc?.diC Spot array or an irreg_ular. labyrinthine structure. The
found that the instability always leads to stationary periodicna! Stage of such an evolution is very slow when the system
structures. Figure 5 gives two characteristic examples oparameters are chosen in the middle of the unstable region.
these patterns. The structure shown in Fig) Bas a small Therefore, in our nqmenc_al ;lmulatlons we were not abI_e to
amplitude and its profile is almost harmonical. It can thereJ€ach the asymptotic periodic states in the two-dimensional
fore be described using the local Cahn-Hilliard approxima-Systems. However, our simulation results already allow us to
tion. In contrast to this, the structure shown in Figb)sis ~ show the principal morphologies of the emerging patterns.
characterized by two different characteristic length scales When the interaction strength is gradually increased
and can be viewed as a periodic array of domains with sharprhile keeping the parametessand g constant, morphologi-
interfaces. The spatial period of this structure is much largecal transitions from a dense-on-dilute spot arfgig. 6a)]

than the interaction radius. However, the width of the do-via complex labyrinthine phas¢Big. 6(b)] towards a dilute-
main boundaries is in this case close to the interaction radiugn-dense spot arrgyFig. 6(c)] are observed in region Il of
Moreover, the adsorbate coverage changes significantlihe phase diagram in Fig(d).

across the structure. Even for short interaction radii, it can Inside the cusp regions in Fig. 1, two uniform states cor-
therefore correctly be described only using the nonlocal kitesponding to high and low coverages are possible. Usually
netic equatior{1). Note that small-amplitude structures havethe considered instability develops only for one of these
been found in our simulations only in narrow parameter restates, while the second remains stable with respect to small
gions. Typically, the coverage profiles in the developing mi-perturbations. There are, however, narrow parameter regions
crostructures show a large variation and these profiles an@enoted as VI in Figs. 1 and) 3vhere both uniform states
strongly nonharmonical. are unstable. Different initial conditions can lead here to two



5490 M. HILDEBRAND, A. S. MIKHAILOV, AND G. ERTL PRE 58

ML,
2 L
1 L
0 L n
0.0 0.1 0.2 03 p,
ML,
12
FIG. 6. Typical reaction-induced microstructures in two-
dimensional systems. The darker areas correspond to regions with
8t higher adsorbate coverages. In Fig&)22(c) the total size of the
system isL=3.39,, the dimensionless interaction radius (g
=0.042, the dimensionless rate constant of thermal desorption is
a=0.09, the dimensionless reaction rate constagt9.5, and the
47 dimensionless interaction strengthds=6 (a), £¢=6.02 (b), £=8
(). In Fig. 2d) we haveL=3.21,, ry;=0.04,, «=0.0806,
=0.5, ande =6.4.
0 ‘ ‘ . . . B . -
0.0 0.2 04 Po The full mesoscopic kinetic equatigf) contains internal

noise terms, explicitly taking into account all statistical fluc-
fuations in the system with characteristic lengths exceeding
the coarse-graining length that has been used in its derivation
(the coarse-graining is performed over surface areas of size
less than the interaction radius but still including a relatively
, ) ) L high number of lattice sitesHence, by integration of this
different kinds of modulated phases. Preparing an initial COng 4 ria| stochastic integro-differential equation, the influence
dition where half of the system is covered by the spot arrayyt gtatistical fluctuations on the considered microstructures
and the other half with the labyrinthine phase, we fifR). ., pe directly investigated.
6(d)] that in this case the interface separating the two Spa- | the deterministic mean-field limit, the properties of the
tlally modulat_ed phases slowly moves into the region filled 4o rbate patterns do not depend on thbsolutesizes with
with the Iabyr'lnthlne array. _— . respect to the lattice length,. Indeed, this microscopic
The .total' size of the system shown in Fig. 6_IS only abouqength does not enter into the kinetic evolution equatibn
three_d|_ffu5|on lengths with respect to the reaction. The Char\'/vhen the noise terms are neglected. When, however, internal
acteristic length scale of the patterns would become evefises of the reaction, adsorption, desorption, and diffusion

FIG. 4. Dependence of the wavelength of the first unstable mod
No on the dimensionless interaction radipg for e=6 and (a)
Kao/ki=1 and(b) kg o/k,=50 (b). The thin lines show the respec-
tive dependence yielded by the approximati@f).

shorter if the Interaction radius is f“”hef reduded. Eqg. _processes are taken into account, their intensities are propor-

(20)]. On these m|croscales, thg st_ochgsnc nature of the di ional to the lattice length, as can be seen from E5.

fusion and reaction processes is significant. Hence, the noise effects get stronger if, while keeping con-
stant all other parameters and characteristic lengths, we in-

¢ L‘ c b crease the lattice lengtly. This has a simple explanation. If
0583 | the lattice length is larger, a smaller number of lattice ad-
03 T sorption sites per characteristic wavelengthof the devel-

oping microstructures is actually found. This means that the

0.580 | 04l ] individual patterns, such as spots or curved stripes in Fig. 6,
would consist of less adsorbed particles and therefore the
fluctuations would be stronger.

0577 - : . - 05 o 05 WL We have integrated the stochastic differential equatigon

! with the noiseq5) by discretizing the two-dimensional sys-

FIG. 5. Coverage profiles of stationary microstructures in a onetem over a grid of 168160 points. At each grid point,
dimensional system for(a «=0.3846, 8=0.52, £€=6, p, noises were introduced by using independent random num-
=0.0447, andL=3.8., and (b) «=0.1, 8=0.2, £=6, pg ber generators. Figure 7 shows typical results of a simulation
=0.0141, and_=1.19,. including the internal noises. In this simulation we have used
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FIG. 8. The diagram showing the regions where, by appropriate

FIG. 7. Fluctuating coverage distributions obtained by integra_tunlng of the partial pressure, stationary spatially modulated phases

. L . . . can be found at =5. See further explanations in the text.

tion of the mesoscopic kinetic equation with internal noisesZor

=2.2X 103Lf2. The time intervals between subsequent frames arg@o the temperatuje the light intensity(controlling the rate

At=15Kk, . Other parameters and notations are the same as in Fi@onstamkr), and the partial pressumg, determining the ad-

6(b). sorption rate. To plan an experiment, the existence regions of
microstructures in terms of these system parameters should

the same system parameters as in the deterministic simulfe discussed. Moreover, since the interaction radyiss

tion, whose results are displayed in Figbp The additional ~usually not well known, it would also be helpful to consider

large parameterZ was taken here equal tz=2.2 how these regions depend on the variation of the interaction

X10° L, 2. I'adil_,ls. _ _

SinceZ=I52, the diffusion length with respect to reac- First we fix the_te_mperature and cc_)ns_,lder how the behav-
tion L, can in this case be expressed in terms of the microl® Of the system is influenced by variation of the photodes-
scopic lattice length, asL,~149,. Furthermore, we can OfPtion rate constank,. An important question is now
express in terms of the lattice length other characteristid/hether, by adjusting the partial pressure, we would be able

lengths of the considered system, whose values are given [ enter a region yvhere micros_tructures are r—;xpectgd. Figure
the explanation to Fig. (). The total size of the considered 8 shows boundaries of the regions where various microstruc-

system i~ 506 lattice lengths and the interaction radius isw"ad phasesnay be observed if the partial pressure is ap-

ro~6 lattice lengths. Note that lattice constants for the metproprlately tuned

als, such as Pt, are usually close to an angstrom. Hence, theA single or two stable _uniform _phas_es can be found in
iegion 1. In region 2 the high-density uniform phase may be

total size of the system shown in Fig. 7 can be estimated a : ) .
only about 50 nanometers. The four frames in Fig. 7 display"@de unstable with respect to spatial modulation by an ap-

the spatial distribution of the adsorbate in the same system opr_ltate (_:thlce r?f th(_a p:I;\rtlaI prtesbslur(-lz, Whgrea?f bthti '°".V'
three subsequent moments separated by equal time interv gnsity uniform phase Is aways stable. In region s both uni-
At=15k,,. We see that, though the fluctuations are rela-Or™ Phases may be unstable and give rise to two different

tively strong, they do not destroy the basic morphology ofk!ndlS ofhmlcrosthrgchtures.bln reg|or_1f4 thgf t?]ystemt_hfis only a
the nonequilibrium microstructure. single phase, which can be nonuniform if the partial pressure

is chosen appropriately. In region 5 the system has one stable
uniform phase at any partial pressure.
When the interaction radius, is fixed, three different
When possible experiments are considered, the easiestenarios take place as the light intensity, controlling the rate
choice of a nonequilibrium first-order reaction, needed toconstank, , is increased. If the interaction radius exceeds the
observe the considered microstructures, would be the photeraximal radiusr .., the system has only uniform phases
desorption process. Indeed, this process can be viewed adragions 1 and b If it is, however, smaller than,,,, micro-
reaction X+ v—x* where an adsorbed partické interacts  structures can be found if the photodesorption rate is suffi-
with the photonv to produce a vacant surface sie This  ciently strong as compared with the rate of thermal desorp-
reaction has an effective first order. The rate constant of suction. As the light intensity, controlling the rate constdmnt
a reaction does not depend on the surface potential caused sy increased, microstructures first develop from the high-
lateral interactions between adsorbed patrticles if the photodensity adsorbate phagegion 2.
energy is significantly higher than local variations in this The subsequent evolution of the system upon further in-
potential. creasing the rate constantdepends on the magnitude of the
The system parameters that can be varied in such an eijateraction radius. At relatively large interaction ragtilose
periment are the temperatutand hence the dimensionless to but still smaller tharr ) the system returns for higher
interaction strength parametethat is inversely proportional light intensities to region 1 where only uniform phases exist.

V. DISCUSSION AND CONCLUSIONS



5492 M. HILDEBRAND, A. S. MIKHAILOV, AND G. ERTL PRE 58

' i ' T the form of the patterns that develop in the system. More-
over, such nonlinear interactions can make the considered
bifurcations subcritical, so that they would be characterized
by a hysteresis. We have indeed observed such subcritical
behavior in our simulations.

Since the mesoscopic kinetic equation includes internal
noises, whose functional form and intensity have been di-
rectly determined from the underlying stochastic master
equation of the problem, we were also able to consider the
influence of fluctuations on the studied microstructures. It
was found that, even when the attractive interactions extend
only over a relatively small number of lattice neighbors and
the internal fluctuations are rather strong, they still do not
destroy the basic morphology of the nonequilibrium micro-

s . . structures.
0 4 10 20 30 € We want to note that the reaction-induced microstruc-
. _ . . ~ tures, discussed in this paper, together with similar structures

FIG. 9. Depencilgnce of the dimensionless n_1aX|mum_|nteract|oqn the reactive polymer systems represent, from the physical
radius 1 ma,(kyo/D) ™, needed for the observation of microstruc- hqint of view, a special class of patterns. Indeed, periodic
tred phases, on the dimensionless interaction strength stationary Turing patterns in reaction-diffusion systems have

However, for even shorter interaction radii the system firs@ Purely kinetic origin and their wavelength is determined by
goes from region 2 into region 3. Wheky exceeds the a combination of diffusion lengths for the reacting activator
threshold value denoted by the thin dashed line in Fig. 8, i@1d inhibitor specie$25]. On the other hand, equilibrium
enters region 4 with a single spatially modulated phase. i;Patially modulated phasésee the reviej26]) emerge be-
this latter region, the behavior of the considered system i§2Use Of the competition between attractive short-range po-
not significantly different from that of the system in the ab- téntial interactions and repulsive long-range potential inter-
sence of thermal desorption. Note that though Fig. 8 corre@ctions in the system. Their wavelength is therefore
sponds to the specific choice=5, the diagram remains determined only by the energetic parameters and does not

qualitatively unchanged for other choices of this dimension-dePend on any kinetic coefficients, such as the diffusion con-
less interaction parameter. stant. The microstructures studied in this paper are, however,

produced by a competition between attractive potential inter-
tions between particles and the kinetic proce§ises dif-
usion and reactionin the system. This difference is then
revealed in the fact that the characteristic wavelength of such
patterns depends both on the parameters of energetic inter-
actions, i.e., on the interaction radius, and on the diffusion
length of adsorbed particles. Of course, this physical differ-

The bifurcation diagrams have been constructed in thi%nce does not prevent similar mathematical methods from
: : o ; : eing used in theoretical investigations of these different pat-
paper using the linear staplllty analysis of the unn‘orm'states',femsg As shown in the paperg the mathematical stabﬂity
Therefore, they can only indicate where the respective un%paly'sis for the considered sys:tems is, for example, essen-
form states should become unstable and stationary spati ' . ' :
modulation should develop. The nonlinear evolution of such'aIIy analogous to that performed for the Turing patterns in

an instability has been followed in numerical simulations. lnact|vator-|nh|b|t0r T"Od.e's- C .
the one-dimensional case, formation of stationary periodi Though theoretical investigations have been performed in

structures was always found above the instability point. Fo T?f;zdghzrr]rll)i/czrrter;it?grsntserphserer%rgszllgcr)]gbgﬁgfefgrsl V\?gr‘
two-dimensional systems, our simulations give evidence of » they may 9

rich morphology of developing nonequilibrium stationary other systems, such as reactive polymer blends. Indeed, we

microstructures. The typical observed patterns represent%ﬁve effectively considered an example of a system with a

various spot arrays and complex labyrinthine phases. Th rst-order phase transition where both reversible equilibrium
interfaces separating regions with low and high adsorbatéeaﬁlti'g:ils(r'ﬁe'r' thiir ”:(il adr;sorpnorr]‘\ ?nlﬁ ddesodrpgmm? %non-
densities in these patterns have typically the width of thec a4 um reactionisuch as photoinduced desorphaare

interaction radius. When the system has two different non_simultaneously taking place. We have found that, despite the

equilibrium microstructured phases, nonuniform distribu—ff’.1Ct t_hat Fhe equilibrium reacti(_)ns_ cannot _themselves create
tions formed by large patches of these two different phase Inetic microstructures, they_ significantly influence proper-
can be formed on the surface. The boundaries separati S C.)f the microstructures induced by the nonequilibrium
these patches slowly move over the surface, until the less action.
favored microstructured phase is completely eliminated.

A detailed study of nonlinear pattern selection was not a
purpose of this work. Generally, it is known that pattern The authors acknowledge the help of A. Preusser in nu-
selection is controlled by interactions between various growsmerical simulations on the parallel Cray T3E computer, and
ing unstable modeésee, e.g.[24]). They should determine thank M. Scheffler for providing access to this facility.

The maximal interaction radius,,, at which the spa-
tially modulated phases are possible, depends on the ra
constant of thermal desorptioky, and the dimensionless
interaction strengtle =uy/kgT. Figure 9 shows the depen-
dence of the combination, (ks 0/D)*? on the parametes.
We see that ., becomes shorter for smaller(at a fixed
thermal desorption rateand vanishes at=4.

ACKNOWLEDGMENTS



PRE 58 NONEQUILIBRIUM STATIONARY MICROSTRUCTURES . .. 5493

[1] R. Imbihl and G. Ertl, Chem. Re\85, 697 (1995. [17] See, e.g., J. K. Kskov, inCoadsorption, Promoters and Poi-

[2] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and sons edited by D. A. King and D. P. WoodruftElsevier,
G. Ertl, Phys. Rev. Lett65, 3013(1990. Amsterdam, 1998 p. 1; T. L. Einstein and J. R. Schrieffer,

[3] M. Eiswirth and G. Ertl, inChemical Waves and Patterns Phys. Rev. B7, 3629(1973; K. H. Lau and W. Kohn, Surf.
edited by R. Kapral and K. ShowaltéKluwer, Dordrecht, Sci. 75, 69 (1978.
1995, p. 447. [18] P. Zeppenfeld, M. Krzyzowski, C. Romainczyk, G. Gomsa,

[4] J. Wintterlin, S. Vdkening, T. V. W. Janssens, T. Zambelli, and M. G. Lagally, Phys. Rev. Let#2, 2737 (1994; V. I.
and G. Ertl, Scienc78 1931(1997. Marchenko, Pis'ma Zh. Eksp. Teor. F&5, 72 (1992 [JETP

[S5] A. S. Mikhailov and G. Ertl, Chem. Phys. Let238 104 Lett. 55, 73 (1992]; D. Vanderbilt, Surf. Sci.268 L300
(1995; 267, 400(1997. (1992.

%% ? VSV '\é!(:r?llz\(/;tzn&;;gt;gs;(lfggjéjz 1596(1996. [19] G. Giacomin and J. L. Lebowitz, Phys. Rev. Let6, 1094

R n e ' (1996.

[8] 1}2ar?sl?c?ri::eltilcr)]ngl?r:eﬁ;tesrggnecniteznCti)yTlg.Chl-rllggiy(S/rcl:ﬁe [20] G. W Gardiner,Handbook of Stochastic MethodSpringer,
Weinham, 199§ Vol. 5, p. 405. Berlin, 1_985_' .

[9] S. C. Glotzer, E. A. Di Marzio, and M. Muthukumar, Phys. [21] A. S Mikhailov and A. \_(u. Loskut.ovFoundatl.ons of Syr!er-
Rev. Lett.74, 2034(1995. getics Il. Chaos and Nois€nd revised ed(Springer, Berlin,

[10] M. Motoyama and T. Ohta, J. Phys. Soc. J§8.2715(1997. 1996.

[11] Q. Tran-Cong and A. Harada, Phys. Rev. Let6, 1162 [22] T. L. Hill, Statistical Mechanic§McGraw-Hill, New York,
(1996. 1956.

[12] J. Verdasca, P. Borckmans, and G. Dewel, Phys. Res2,E  [23] J. Verdasca, P. Borckmans, and G. Dewel, Phys. ReS5E
R4616(1995. 4828(1997).

[13] M. Hildebrand and A. S. Mikhailov, J. Phys. Cherh00 [24] D. Walgraef, Spatio-Temporal Pattern Formatio(Springer,
19 089(1996. Berlin, 1997%.

[14] R. Lefever, D. Carati, and N. Hassani, Phys. Rev. LeR.  [25] J. Boissonade, E. Dulos, and P. De Keppeglemical Waves
1674(1995; S. C. Glotzer, D. Stauffer, and N. Jahid. 75, and Patternsedited by R. Kapral and K. ShowaltéKluwer,
1675(1995. Dordrecht, 1995 p. 221; Q. Quyang and H. L. Swinnekjd.,

[15] J. W. Cahn and J. E. Hillard, J. Chem. Phg8, 258 (1958. p. 269.

[16] B. Huberman, J. Chem. Phy85, 2013(1976. [26] M. Seul and D. Andelman, Scien@67, 476 (1995.



