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Nonequilibrium stationary microstructures in surface chemical reactions

M. Hildebrand, A. S. Mikhailov, and G. Ertl
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

~Received 14 July 1998!

Adsorbates with attractive lateral interactions between molecules in the presence of adsorption and thermal
desorption are considered. We show that a sufficiently strong nonequilibrium reaction or the process of
photoinduced desorption can destabilize uniform stationary phases of the adsorbates and lead to nonequilib-
rium microstructures whose wavelength is typically shorter than the diffusion length and may hence be on the
micrometer to nanometer scale. Despite their small sizes, such microstructures are not destroyed by internal
statistical fluctuations.@S1063-651X~98!03511-9#

PACS number~s!: 82.20.Mj, 47.54.1r, 68.10.Jy, 82.65.Jv
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I. INTRODUCTION

Catalytic chemical reactions in adsorbates on metal
faces are an important and intensively investigated clas
nonequilibrium physicochemical systems@1#. Application of
photoelectron emission microscopy~PEEM! has led to the
discovery of a rich variety of spatiotemporal patterns in th
systems, including traveling or rotating spiral waves and t
bulence@2#. The characteristic length scales of such patte
lay in the range of tens of micrometers, whereas the diffus
length of the mobile surface species was about 1mm and the
lattice constant was of order 1024 mm. Therefore, all these
patterns were effectively macroscopic and their proper
could well be described by the classical reaction-diffus
models neglecting fluctuations and interactions between
molecules@3#. The recent development of the fast scann
probe, however, makes it possible to study surface react
with an atomic resolution@4#. Moreover, the high-resolution
PEEM is coming up and would soon allow one to image
reaction patterns on the submicrometer scale.

Nonequilibrium spatiotemporal patterns on scales sho
than the diffusion length may result from the interplay
reactions and attractive potential interactions between ad
bate molecules@5,6#. Indeed, short-scale transient patter
develop at the initial stage of the phase separation pro
@7,8#. It is known that nonequilibrium reactions can free
these transient patterns and thus lead to the emergenc
stationary microscopic patterns in binary mixtures, such
polymer blends@9–11#. It has earlier been suggested@12#
that adsorption and thermal desorption processes can
similar effects in the adsorbates with attractive interactio
between particles. However, our theoretical analysis of s
systems@13# has shown that adsorption and thermal deso
tion do not lead to the development of stationary microstr
tures. Instead the system always evolves to a state of the
equilibrium characterized by uniform adsorbate coverage

Adsorption and thermal desorption correspond to
change of particles between the surface and a large gas
ervoir that form together a closed system. This system m
therefore relax to a state of thermal equilibrium that can
depend on any purelykinetic properties of the system. Con
sequently, microstructures with the period dependent on
diffusion constants of adsorbed particles are not possibl
such closed systems. Adsorption and thermal desorption
PRE 581063-651X/98/58~5!/5483~11!/$15.00
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resent ‘‘equilibrium reactions’’ which are not themselv
able to induce the formation of kinetic spatially modulat
stationary phases. For polymer blends, such special beha
of equilibrium chemical reactions has been noted in the d
cussion@14#.

Thus, an interesting and previously not addressed qu
tion is what would happen if, in addition to adsorption a
thermal desorption, the considered system includes an
versible nonequilibrium surface chemical reaction.

The theoretical analysis of kinetic processes in syste
undergoing a first-order phase transition is usually perform
in the framework of the Cahn-Hilliard equation@15,16#. This
equation represents a local approximation that is valid w
the radius of interactions between the particles is mu
shorter than all characteristic length scales of emerging s
tial patterns. Interactions between adsorbed molecules
metal surfaces are often mediated through the substrat
chemisorption-induced modulation of the local electron
structure@17# or by chemisorption-induced elastic stress
@18# and may therefore extend over relatively long distanc
On the other hand, the characteristic diffusion lengths
some adsorbed species may be relatively short and there
not strongly different from the radius of interactions betwe
adsorbed particles. In such situations, the approaches b
on the Cahn-Hilliard equation are not applicable and a n
local kinetic description is needed.

We have recently proposed@5# and then directly derived
from the underlying microscopic master equation@13# a non-
local mesoscopic kinetic equation for the adsorbates that
plicitly takes into account lateral potential interactions b
tween the particles. We have also shown how inter
fluctuations can be incorporated into this description by a
ing internal noises into the nonlocal kinetic equation@13#.
The small parameter used in the derivation is the inve
number of surface lattice sites in the area with the interac
radius. Hence, this mean-field kinetic equation with fluctu
tions is generally applicable when attractive interactions
tend over many lattice lengths. A similar nonlocal equati
without fluctuating terms has recently been independe
constructed for binary alloys in the limit of long-range inte
actions@19#. The novel mesoscopic nonlocal kinetic equati
has already been used@13# to describe the nucleation kinetic
of equilibrium phase transitions in adsorbates in the prese
5483 © 1998 The American Physical Society
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of adsorption and desorption processes far from the crit
point of the phase transition.

The aim of this study is to theoretically investigate t
influence of irreversible nonequilibrium surface chemical
actions on phase transitions in adsorbates in the presen
adsorption and thermal desorption processes. We show
in these systems strong enough nonequilibrium reactions
induce the formation of stationary microstructures with t
wavelengths lying in the submicrometer and nanosc
range. Our analysis is based on the mesoscopic kinetic e
tion. This allows us to study the effects of interactions with
finite radius and investigate the influence of fluctuations
such reactive adsorbates.

In Sec. II we formulate a mesoscopic kinetic equation
the considered systems and compare this approach with o
kinetic descriptions based on the Cahn-Hilliard equati
The linear stability analysis of the uniform adsorbate pha
is performed in Sec. III. Its results are used to constr
bifurcation diagrams for the considered system and disc
the parameter dependence of the critical wavelength.
nonlinear stage of the instability and the morphology of
developing stationary microstructures are then investiga
by numerical simulations in Sec. IV. In Sec. V possible e
perimental realizations of the considered nonequilibrium
crostructures are discussed.

II. THE MESOSCOPIC KINETIC EQUATION

As an example, we consider a system with a single k
of molecule that adsorbs on, desorbs from, and diffusiv
moves across a solid surface. These molecules exhibit p
wise attractive interactions and are subject to a first-or
nonequilibrium chemical reaction whose product imme
ately leaves the surface. This system is described~see@13#!
by the following mesoscopic kinetic equation for the loc
coveragec of adsorbed molecules:

]c

]t
5kap0~12c!2kdc2krc1

]

]r S D

kBT
~12c!c

]U~r !

]r D
1D

]2c

]r2 1j~r ,t!. ~1!
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The first term describes the rate of adsorption determined
the initial sticking coefficientka , the partial pressure of the
gaseous speciesp0 , and the fraction of the surface bein
adsorbate-free, 12c. In the following terms,kd is the de-
sorption rate constant,kr is the reaction rate constant,D is
the molecular diffusion constant for the adsorbate, andT is
the temperature. The local surface potentialU(r ), experi-
enced by adsorbed molecules, is caused by lateral pair
attractive interactions and is given by the integral

U~r !52E u~r2r 8!c~r 8!dr 8. ~2!

The rate constant for desorption can then be written as

kd5kd,0 exp@U~r !/kBT#, ~3!

wherekd,0 is its value in the absence of interactions.
Equation~1! includes a term that describes viscous flo

of the adsorbate induced by the potential gradient. A
simple approximation for the interaction potential, w
choose the Gaussian profile

u~r !5~u0 /pr 0
2!exp~2r 2/r 0

2!, ~4!

whereu0 specifies the interaction strength andr 0 is the in-
teraction radius.

The first-order reaction model underlying Eq.~1! can ac-
tually represent a bimolecular reaction where the second
cies reacts directly from the gas phase~Eley-Rideal mecha-
nism!. Another possible realization of this reaction is
process of photoinduced desorption~see further discussion in
Sec. V!. In both cases the reaction is nonequilibrium sin
energy is brought with photons or molecules of the seco
species that hit the surface. Therefore, the reaction rate
stantkr does not depend, in contrast to the thermal deso
tion rate constant, on the local potential for the adsorb
particles.

The random termj(r ,t) in Eq. ~1! combines internal
noises of reaction, adsorption, desorption, and diffusion p
cesses:
j~r ,t !5
1

Z1/2 Akap0~12c! f a~r ,t !1
1

Z1/2 Akd,0c exp„U~r !/2kBT…f d~r ,t !1
1

Z1/2 Akrc fr~r ,t !

1
1

Z1/2

]

]r
$A2Dc~12c!f~r ,t !%, ~5!
astic

the

ra-
where the random forcesf a(r ,t), f d(r ,t), f r(r ,t), andf(r ,t)
represent independent white noises of unit intensity, so
^ f a(r ,t) f a(r 8,t8)& 5 ^ f d(r ,t) f d(r 8,t8)& 5 ^ f r(r ,t) f r(r 8,t8)&
5^ f x(r ,t) f x(r 8,t8)&5^ f y(r ,t) f y(r 8,t8)&5d(r2r 8)d(t2t8)
and ^ f xf y&50. The derivation of the stochastic mesosco
equation~1! with internal noises~5! from the respective full
microscopic master equation on a lattice, employing par
at

c

l

averaging~coarse graining!, has been performed in Ref.@13#
~see also the general discussion of mesoscopic stoch
equations@20,21#!. The parameterZ in Eq. ~5! is given by
the number of lattice sites per unit surface area, so that
atomic lattice length isl 05Z21/2. A small parameter em-
ployed in this derivation isd5(r 0

2Z)21, i.e., the inverse
number of lattice sites inside an area of the interaction
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PRE 58 5485NONEQUILIBRIUM STATIONARY MICROSTRUCTURES . . .
dius. The conditiond!1 implies thatr 0@ l 0 , i.e., that the
interaction radiusr 0 should be much larger than the atom
lattice length.

In the absence of the reaction, the considered system
an equilibrium first-order phase transition@22#. Then, its sta-
tionary uniform states are given by the roots of the equa

a~12c!5exp~2«c!c, ~6!

where the notations«5u0 /kBT anda5kap0 /kd,0 have been
introduced. This is the standard mean-field equation of
adsorption isotherm~cf. @22#!. Inside the cusp region of th
parameter plane@Fig. 1~a!#, the system is bistable: both high
and low-density uniform adsorbate phases are possible.
critical point of this equilibrium phase transitionccr50.5 is
located at«54 and lna522.

Before the analysis of pattern formation phenomena,
scribed by this model, we want to discuss its relation to
other approaches for the description of reacting systems
first-order phase transitions, based on the Cahn-Hilli
equation.

Assuming that the coveragec(r ,t) does not significantly
vary within the distances about the interaction radiusr 0 and
neglecting fluctuations, the integro-differential equation~1!
can be approximated~as shown in Ref.@13#! by the follow-
ing local kinetic equation:

]c

]t
5kap0~12c!2kd,0 expS 2

u0c

kBTD c2krc

1
]

]r S Deff~c!
]c

]r D2
]

]r S G~c!
]3c

]r3D , ~7!

FIG. 1. Bifurcation diagrams in the parameter plane~a,«! for ~a!
b50 ~no reaction!, ~b! b50.05,~c! b50.162, and~d! b50.5. The
dashed line shows the instability boundaries with respect to peri
spatial modulation in the limitr 0!Lr . In the marked regions the
system has~I! single uniform phase,~II ! single spatially modulated
phase,~III ! two uniform phases,~IV ! one uniform low-density and
one spatially modulated phase,~V! one uniform high-density and
one spatially modulated phase, and~VI ! two different stable spa-
tially modulated nonequilibrium phases.
as

n

n
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e-
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d

where

Deff~c!5D@12«c~12c!#, G~c!5 1
2 D«r 0

2c~12c!.
~8!

It can also be written in the equivalent form

]c

]t
5Q~c!1

]

]r S M ~c!
]

]r

dF

dc~r ! D , ~9!

where

F@c#5E F2 1
2 «c21c ln c1~12c!ln~12c!

1 1
4 «r 0

2S ]c

]r D
2Gdr , ~10!

Q~c!5kap0~12c!2kd,0 expS 2
u0c

kBTD c2krc, ~11!

andM (c)5Dc(12c).
Equation ~9! represents the local Cahn-Hilliard kinet

equation for the considered system, including additio
terms to account for adsorption, desorption, and reaction
cesses. Note that the dependence of the coefficientM on the
coveragec can only be neglected if coverage variations
considered patterns are small, i.e., the patterns have s
amplitudes.

Near the critical point«54 of the equilibrium phase tran
sition, decomposition in powers of small deviations from t
critical coveragec50.5 can be performed here. Retainin
only the leading terms, this yields the Landau free-ene
functional:

F̃@c#5 1
4E F2 1

2 ~«24!f21 4
3 f41r 0

2S ]f

]r D 2Gdr , ~12!

where f5c20.5. Puttingc50.5 in the kinetic coefficient
M (c), the approximate Cahn-Hilliard equation in the vici
ity of the point«54 is thus obtained:

]c

]t
5Q~c!1D

]2

]r2 S dF̃

dc~r !
D . ~13!

The Cahn-Hilliard equation in the form~13! with the Lan-
dau free energy~12! has first been applied by Huberman@16#
to describe the influence of chemical reactions on syste
with phase transitions. The approaches based on the C
Hilliard equation were later employed in theoretical stud
on phase separation phenomena in polymer blends
chemical reactions@9,10#. The polymer blends were modele
as simple binary mixtures with componentsA andB and the
reactionsA→B ~with the rate constantG1! andA←B ~with
the rate constantG2! were taken into account. The reactio
rate constants were not influenced by interactions betw
moleculesA andB, responsible for the phase transition, a
hence only nonequilibrium~e.g., optically induced! reactions
were considered. Assuming the incompressibility condit
cA1cB51, the reaction part of the kinetic equation~13! had
in this case the form

ic
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Q~c!5G22~G11G2!c, ~14!

where the notationc5cA is employed. The rate constants
the forward and backward reactions were taken equalG1
5G25G) by Glotzer et al. @9#, who have used the Cahn
Hilliard equation in the form~9! with the free-energy func-
tional ~10!. Motoyama and Ohta@10# have subsequently in
vestigated the nonsymmetric case (G1ÞG2) in the
framework of the Cahn-Hilliard approach, using in their n
merical simulations a simple model form for the free ene
and performing their analytical investigation for the Land
free energy~12!. In both these studies the kinetic coefficie
M (c) in the Cahn-Hilliard equation~9! was taken constant

The adsorbates can also be formally viewed as bin
mixtures if the adsorbed molecules are considered as
ticlesA and the empty sites as fictitious particlesB. Compar-
ing Eq. ~14! with Eq. ~11!, we see that the results of th
studies@9,10# can also be applied to reactive adsorbates w
short interaction radii in the absence of thermal desorp
(kd,050), provided the coverage in the considered patte
is weakly varying around a certain mean level.

Verdascaet al. @12# have used the Cahn-Hilliard equatio
~13! with the Landau free energy~12! to study adsorbate
with first-order phase transitions in the presence of ads
tion and associative desorption processes. These proc
were taken into account by choosing

Q~c!5kap0~12c!2kdc2, ~15!

where the first term described adsorption and the sec
term ~with a constant coefficientkd! corresponded to the as
sociative desorption process.

However, if thermal desorption is considered, the deso
tion rate constantkd must depend on the local potential. In
deed, the particles leaving the surface must overcome a
tain potential barrier that is modulated by the local poten
due to the interactions between these adsorbed particle
the subsequent discussion, Verdascaet al. have pointed out
@23# that the experimental data for thermal desorption of
show deviations from the mean-field results and theref
Eq. ~15! with constant coefficients may, perhaps, still
used as a phenomenological description of adsorption
desorption processes.

The choice of an expression for the thermal desorpt
rate cannot be arbitrary. There are two different situatio
involving adsorption and thermal desorption. On one ha
these processes can take place in an open reactor. O
other hand, adsorption and thermal desorption can sim
correspond to reversible exchange of particles between a
face and a gas reservoir in a closed system. The partial p
sure in the gas phase can be constant in both of these s
tions, if the pumping rate in the open reactor is high or if t
gas reservoir is large in the closed system. It is important
both situations are described by exactly the same kin
equation for the adsorbate and therefore the behavior of
adsorbate should be the same in both cases. But a cl
system must relax to the state of thermodynamic equilibri
whose properties cannot depend on any kinetic coefficie
such as the diffusion constant of adsorbed particles on
surface. If, however, the rate of thermal~associative! desorp-
tion is phenomenologically chosen in the form~15!, the
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Cahn-Hilliard equation~13! yields steady states~see @12#!
whose propertiesdependon the diffusion constant and tha
cannot, therefore, correspond to the true thermal equilibriu

Apparently, since the Cahn-Hilliard equation is based
the mean-field approximation, it is consistent only with t
expressions for the adsorption and desorption rates tha
derived in the same mean-field approximation. Indeed, in
study@13# we have shown that if the monomolecular therm
desorption is described by the classical coverage-depen
desorption rate constantkd5kd,0 exp(2u0c/kBT) obtained in
the mean-field approximation~see, e.g.,@22#!, the system
always relaxes to the state of thermal equilibrium with on
uniform adsorbate phases. From our point of view, the th
retical results of Ref.@12# may apply, therefore, only to the
situations where the associative desorption is not therm
but externally induced.

Thus, we see that previous investigations do not yi
results applicable in situations where both thermal desorp
and nonequilibrium reactions are present and are influen
the adsorbate phase transition. Moreover, since they w
based on the Cahn-Hilliard equation, their results are
applicable when the interaction radius is comparable w
characteristic length scales of the appearing patterns.
analysis of the problem is performed in the next sections
the framework of the mesoscopic kinetic equation~1!.

III. LINEAR STABILITY ANALYSIS
AND BIFURCATION DIAGRAMS

To analyze instabilities leading to the formation of no
equilibrium stationary microstructures and to determine
furcation boundaries in the parameter space of the sys
we first consider in this section its deterministic limit, n
glecting noise terms in the kinetic equation~1!. The station-
ary uniform states of the system are given by the roots of
equation

a~12c!2bc5exp~2«c!c, ~16!

where we have additionally introduced the dimensionless
action rate constantb5kr /kap0 . Without the reaction (b
50), it reduces to the mean-field equation of an adsorpt
isotherm that describes a first-order phase transition in
adsorbate@22#. Inside the cusp region, whose boundaries
shown by the bold line in Fig. 1~a!, the system is bistable
both dense and dilute uniform adsorbate phases are poss
Introduction of the nonequilibrium monomolecular reacti
modifies the phase diagram: As the dimensionless reac
rate constantb increases, the cusp shifts to higher values
the dimensionless interaction strength«5u0 /kBT and
smaller values of the dimensionless relative adsorption
a5kap0 /kd,0 @see Figs. 1~b!–1~d!#. The critical point is lo-
cated at«* 54(11b) anda* 5(11b)21e22; the coverage
at this point isc* 5@2(11b)#21.

The stability of uniform states is tested by adding sm
perturbations dc(x,t)5dc exp(gkt)exp(ikx) in the one-
dimensional system. Linearizing the kinetic equation~1!, we
find that the increment of growth of these perturbations
given by
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gk52kap02kr1kd,0~«c21!e2«c2Dk2@12«c~12c!#

2@kd,0«ce2«c1Dk2«c~12c!#~12e2r 0
2k2/4!. ~17!

We see thatgk is always real and the unstable modes are
oscillatory. The situation is similar to the classic Turing i
stability in activator-inhibitor systems: The dispersiongk has
a single maximum at a wave numberk0 which changes its
sign at the instability, i.e., the stability boundaries and
wave numberk0 of the first unstable mode are determined
the conditions thatgk50 and]gk/]k50 at k5k0 .

Using Eq.~17!, the wave numberk0 of the first unstable
spatial mode is determined as

k0
25

1

12c0
H 2

1

Ld
2 1

1

2Lr
2

3F211S 11
16Lr

2

r 0
2 ~12c0! D 1/2G J . ~18!

Two different diffusion lengths are introduced here:Ld
5(D/kd,0)

1/2 exp(«c0/2) is the diffusion length of adsorbe
particles with respect to their thermal desorption, whileLr
5(D/kr)

1/2 is their diffusion length with respect to the non
equilibrium first-order chemical reaction. The parameterc0
is the coverage in the uniform state at the respective in
bility boundary.

It follows from Eq. ~18! that the wave numberk0 van-
ishes and therefore the wavelengthl052p/k0 of the first
unstable mode diverges when the interaction radiusr 0 ap-
proaches a critical valuer c given by equation

r c52LdS 12c0

11Lr
2/Ld

2D 1/2

. ~19!

When r 0.r c , Eq. ~18! yields k0
2,0, implying that the in-

stability is then absent. On the other hand, when the cha
teristic radius of the lateral interactions is small as compa
with both characteristic diffusion lengths, i.e., if the cond
tions r 0!Lr and r 0!Ld

2/Lr are satisfied, the wavelength o
the first unstable mode can be approximately estimated u
Eq. ~18! as

l0521/2p~12c0!1/4~r 0Lr !
1/2. ~20!

~This result might also be obtained using the Cahn-Hillia
approximation. It agrees with the respective estimate deri
using the Cahn-Hilliard kinetic equation in Ref.@9# for the
reactive binary mixtures, such as polymer blends.! Thus, the
critical wavelength would generally lie in this limit betwee
the radiusr 0 of lateral interactions and the diffusion leng
Lr .

The instability boundaries can easily be determined w
the interaction radiusr 0 is much shorter than the waveleng
of the first unstable modes. Ifr 0k→0, the last term on the
right-hand side of Eq.~17! can be neglected andgk is simply
given by

gk5gk502Dk2@12«c~12c!#. ~21!

If a uniform steady state with the coveragec is stable with
respect to uniform perturbations, gk5052kap02kr
t

e

a-

c-
d

ng

d

n

1kd,0(«c21)e2«c must be negative. This state will, how
ever, be unstable with respect to nonuniform, spatia
modulated perturbations with sufficiently large wave nu
bers k.gk50 /Deff(c) if the effective diffusion coefficient
Deff(c)5D@12«c(12c)# is negative. Thus, the instability
boundaries are determined in the limitr 0→0 by the equation
Deff(c)50 together with Eq.~16!. Note that the solution of
Deff(c)50 yields then the coveragec0 at the respective insta
bility boundary that should be substituted into Eq.~20!.

The computed instability boundaries in the parame
plane~a,«! at different values of the dimensionless relati
reaction rate constantb5kr /kap0 in the limit r 0→0 are
shown in Fig. 1. In the absence of the reaction (b50) the
system has one stable uniform state in the region~I! and two
uniform stable states in the region III inside the cusp@Fig.
1~a!#.

As b is increased@Fig. 1~b!#, the instability first develops
at the cusp boundaries~in the regions IV and V! and near the
critical point ~in the region II!. The system remains, how
ever, in the stable uniform phase in region I and has t
stable uniform phases in the region III. Note that in the
gion IV the system has a stable uniform low-density pha
whereas the uniform high-density phase is unstable with
spect to nonuniform perturbations. The situation is oppo
in the very narrow region V, where the uniform high-dens
phase is stable and the uniform low-density phase is unst
and develops spatial modulation. In region VI both unifor
phases are unstable with respect to periodic spatial mod
tion.

When the reaction rate is increased, the bifurcation d
gram undergoes a significant change@Fig. 1~c!#. The region
V disappears and the region II extends to the domain of h
values of the parameter«, specifying the relative intensity o
attractive lateral interactions. If the reaction is further i
creased, the dashed boundary of the region II moves in
right direction and we have eventually a situation where
instability with respect to spatial modulation is present in
large part of the parameter plane@Fig. 1~d!#, even far from
the cusp region.

As noted in the Introduction, the radius of lateral intera
tions in adsorbates can be relatively large, especially if th
interactions are mediated through elastic deformations in
metal substrate. Therefore, evolution of the bifurcation d
grams under an increase in the interaction radius should
investigated. To illustrate the effects of nonlocal interactio
we show how typical bifurcation diagrams in the parame
plane ~b,«! are modified when the interaction radius is i
creased.

Let us first consider, as a simple example, the system
the absence of thermal desorption (kd,050). Figure 2 shows
in this case the family of the instability boundaries of t
uniform state in the plane~b,«! for different values of the
dimensionless radiusr05r 0 /Lr . The uniform state is un-
stable with respect to periodic spatial modulations inside
regions bounded by these curves. The lowest curve co
sponds to the limitr0→0. As the interaction radius is in
creased, the instability region moves upwards to higher v
ues of the effective interaction strength«. Therefore, if we
fix « and increaser0 , the interval ofb values where the
uniform phase is unstable will shrink until at a critical valu
of r0 the two instability boundaries merge and for largerr0
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the instability is absent for any values ofb. This follows
from the fact that the nonlocal terms contributing to t
growth rate in Eq.~17! all have negative signs, i.e., they ha
a stabilizing effect on the uniform phase.

In the presence of strong enough thermal desorption,
situation is more complex. When the desorption rate cons
exceedskd,05e2kr , the system can have two coexisting un
form phases. In the plane~b,«! the critical point of this tran-
sition is located at b* 5@e22kd,0 /kr21#21 and
«* 54(11b* ). Figure 3 shows bifurcation diagrams in th
plane forkd,0550kr and different values of the dimension
less interaction radiusr0 . Similar to the diagrams shown i
Fig. 1, they include the cusp region where the system
two uniform states stable with respect to uniform pertur
tions. The boundaries of this region are determined by
~16! and do not depend on the interaction radius. Howev
the boundaries of the instabilities with respect to nonunifo
perturbations~shown by dashed curves in Fig. 3! are sensi-
tive to variations of the interaction radius. Together with t
cusp, these boundaries determine regions I to VI, which
labeled here in the same way as in Fig. 1.

When the interaction radius is very small~i.e., r0→0!,
the diagram@Fig. 3~a!# includes a relatively wide region I
where the system has only one spatially modulated ph
Additionally, however, inside the cusp regions IV and VI a
found where the system has two uniform phases and e
one or both of them are unstable with respect to the perio
modulation. If we now start to increase the interaction rad
the instability boundaries~i.e., the dashed curves! begin to
move in the directions indicated by arrows in Fig. 3. Wh
r050.1 @Fig. 3~b!#, the unstable region II shifts upwards an
becomes more narrow~cf. Fig. 2!. Moreover, inside the cusp
region the stability boundary of the low-density unifor
phase nearly merges with its existence boundary, so tha
gion VI has almost disappeared. Atr050.17 @Fig. 3~c!#,

FIG. 2. Bifurcation diagram in the parameter plane~b,«! in the
absence of thermal desorption (kd,050) for several different values
of the dimensionless interaction radius:r050 ~solid curve!, r0

50.1 ~dashed!, r050.5 ~dot-dashed!, and r051.0 ~long-dashed
curve!. Inside the regions bounded by these curves, a single,
tially modulated phase is found at the respective values ofr0 .
Outside of these regions the system has a single stable uni
phase.
e
nt

s
-
q.
r,

re

e.

er
ic
,

re-

regions II and VI are already absent. Furthermore, since
stability boundary for the high-density phase~the dashed
curve! has moved towards its existence boundary~the right
solid curve!, a new region III has appeared. Finally, upo
further increasingr0 , the unstable region IV of the dens
phase shrinks until it eventually also disappears@cf. Fig. 3~d!
with r050.23#.

The evolution of the stationary microstructures under
increase of the interaction radius can also be followed
looking at the respective dependence of the wavelengthl0 of
the first unstable mode, generally determined by Eq.~18!.
When the effective interaction strength is chosen below
critical cusp point~i.e., «,«* !, we have two instability
boundaries and, therefore, two different wavelengths. T
typical dependence of these wavelengths on the dimens
less interaction radius is shown in Fig. 4~a!. We see that, as
a certain critical interaction radius~corresponding to merging
of these two boundaries and disappearance of the instab
at a given«! is approached, the wavelengths of the two u
stable modes come closer and meet while remaining finite
should be noted that the critical value ofr0 corresponding to
the merging point is always smaller than its critical value
the divergence of the characteristic wavelength given by
~19!.

The development is different when the parameter« is
fixed above the critical point~i.e., «.«* ! @Fig. 4~b!#. In this
case, only a single stability boundary~and hence a single
wavelength of the first unstable mode! is associated with
each of the uniform phases. These wavelengths increase
the interaction radius for both phases. They diverge, goin
infinity as l}(rc2r0)1/2, when the dimensionless interac
tion radius reaches the critical valuesrc given by Eq.~19!.
Thus, close torc the appearing modulated structures wou
represent macroscopic patterns. Note that the divergencel
takes place when the stability boundary for a given unifo
phase hits the corresponding existence boundary. There
the value ofc0 in Eq. ~19! for the critical interaction radius is

c05
1

2~11b! F16S 12
4~11b!

« D 1/2G . ~22!

Here the signs1 and 2 correspond to the low- and high
density uniform phases, respectively.

We have shown additionally by thin solid and dash
curves in Figs. 4~a! and 4~b! the dependences of the critica
wavelengths yielded by the approximation~20! that is
equivalent to using the Cahn-Hilliard kinetic equation. Ge
erally, this approximation is good only for very small inte
action radii. However, as seen from Fig. 4~a!, it correctly
yields the wavelength of the first unstable mode below
critical cusp point at lower reaction rate constants almost
to the moment when the two boundaries merge and the
stability disappears at a critical interaction radius.

Our bifurcation diagrams have been constructed in t
section by a linear stability analysis of the uniform stea
states. Therefore, they only show the boundaries where t
uniform states become unstable and the growth of spati
nonuniform modes begins. The nonlinear stage of such in
bilities and the properties of developing nonlinear station
patterns are numerically analyzed in Sec. IV.
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FIG. 3. Bifurcation diagrams in the parameter plane~b,«! for kd,0 /kr550. The solid curves show the boundaries of the region where
uniform states, both stable with respect to uniform perturbations, are present. The instability boundaries of uniform phases with r
periodic spatial modulation are shown by dashed curves at several different values of the dimensionless interaction radius:~a! r0→0, ~b!
r050.1, ~c! r050.17, and~d! r050.23.
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IV. NUMERICAL SIMULATIONS

The behavior of the system has been followed in num
cal simulations. In the one-dimensional system, we h
found that the instability always leads to stationary perio
structures. Figure 5 gives two characteristic examples
these patterns. The structure shown in Fig. 5~a! has a small
amplitude and its profile is almost harmonical. It can the
fore be described using the local Cahn-Hilliard approxim
tion. In contrast to this, the structure shown in Fig. 5~b! is
characterized by two different characteristic length sca
and can be viewed as a periodic array of domains with sh
interfaces. The spatial period of this structure is much lar
than the interaction radius. However, the width of the
main boundaries is in this case close to the interaction rad
Moreover, the adsorbate coverage changes significa
across the structure. Even for short interaction radii, it
therefore correctly be described only using the nonlocal
netic equation~1!. Note that small-amplitude structures ha
been found in our simulations only in narrow parameter
gions. Typically, the coverage profiles in the developing
crostructures show a large variation and these profiles
strongly nonharmonical.
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In two-dimensional systems, the instabilities lead to t
development of spatial patterns that tend to approach a p
odic spot array or an irregular labyrinthine structure. T
final stage of such an evolution is very slow when the syst
parameters are chosen in the middle of the unstable reg
Therefore, in our numerical simulations we were not able
reach the asymptotic periodic states in the two-dimensio
systems. However, our simulation results already allow u
show the principal morphologies of the emerging pattern

When the interaction strength« is gradually increased
while keeping the parametersa andb constant, morphologi-
cal transitions from a dense-on-dilute spot array@Fig. 6~a!#
via complex labyrinthine phases@Fig. 6~b!# towards a dilute-
on-dense spot array@Fig. 6~c!# are observed in region II o
the phase diagram in Fig. 1~d!.

Inside the cusp regions in Fig. 1, two uniform states c
responding to high and low coverages are possible. Usu
the considered instability develops only for one of the
states, while the second remains stable with respect to s
perturbations. There are, however, narrow parameter reg
~denoted as VI in Figs. 1 and 3! where both uniform states
are unstable. Different initial conditions can lead here to t
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different kinds of modulated phases. Preparing an initial c
dition where half of the system is covered by the spot ar
and the other half with the labyrinthine phase, we find@Fig.
6~d!# that in this case the interface separating the two s
tially modulated phases slowly moves into the region fill
with the labyrinthine array.

The total size of the system shown in Fig. 6 is only abo
three diffusion lengths with respect to the reaction. The ch
acteristic length scale of the patterns would become e
shorter if the interaction radius is further reduced@cf. Eq.
~20!#. On these microscales, the stochastic nature of the
fusion and reaction processes is significant.

FIG. 4. Dependence of the wavelength of the first unstable m
l0 on the dimensionless interaction radiusr0 for «56 and ~a!
kd,0 /kr51 and~b! kd,0 /kr550 ~b!. The thin lines show the respec
tive dependence yielded by the approximation~20!.

FIG. 5. Coverage profiles of stationary microstructures in a o
dimensional system for~a! a50.3846, b50.52, «56, r0

50.0447, and L53.8Lr and ~b! a50.1, b50.2, «56, r0

50.0141, andL51.15Lr .
-
y

a-

t
r-
n
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The full mesoscopic kinetic equation~1! contains internal
noise terms, explicitly taking into account all statistical flu
tuations in the system with characteristic lengths exceed
the coarse-graining length that has been used in its deriva
~the coarse-graining is performed over surface areas of
less than the interaction radius but still including a relative
high number of lattice sites!. Hence, by integration of this
partial stochastic integro-differential equation, the influen
of statistical fluctuations on the considered microstructu
can be directly investigated.

In the deterministic mean-field limit, the properties of th
adsorbate patterns do not depend on theirabsolutesizes with
respect to the lattice lengthl 0 . Indeed, this microscopic
length does not enter into the kinetic evolution equation~1!
when the noise terms are neglected. When, however, inte
noises of the reaction, adsorption, desorption, and diffus
processes are taken into account, their intensities are pro
tional to the lattice length, as can be seen from Eq.~5!.
Hence, the noise effects get stronger if, while keeping c
stant all other parameters and characteristic lengths, we
crease the lattice lengthl 0 . This has a simple explanation.
the lattice length is larger, a smaller number of lattice a
sorption sites per characteristic wavelengthl0 of the devel-
oping microstructures is actually found. This means that
individual patterns, such as spots or curved stripes in Fig
would consist of less adsorbed particles and therefore
fluctuations would be stronger.

We have integrated the stochastic differential equation~1!
with the noises~5! by discretizing the two-dimensional sys
tem over a grid of 1603160 points. At each grid point
noises were introduced by using independent random n
ber generators. Figure 7 shows typical results of a simula
including the internal noises. In this simulation we have us

e

-

FIG. 6. Typical reaction-induced microstructures in tw
dimensional systems. The darker areas correspond to regions
higher adsorbate coverages. In Figs. 2~a!–2~c! the total size of the
system isL53.39Lr , the dimensionless interaction radius isr0

50.042, the dimensionless rate constant of thermal desorptio
a50.09, the dimensionless reaction rate constant isb50.5, and the
dimensionless interaction strength is«56 ~a!, «56.02 ~b!, «58
~c!. In Fig. 2~d! we haveL53.21Lr , r 050.04Lr , a50.0806,b
50.5, and«56.4.
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the same system parameters as in the deterministic sim
tion, whose results are displayed in Fig. 6~b!. The additional
large parameterZ was taken here equal toZ52.2
3103 Lr

22.
SinceZ5 l 0

22, the diffusion length with respect to reac
tion Lr can in this case be expressed in terms of the mic
scopic lattice lengthl 0 as Lr'149l 0 . Furthermore, we can
express in terms of the lattice length other characteri
lengths of the considered system, whose values are give
the explanation to Fig. 6~b!. The total size of the considere
system isL'506 lattice lengths and the interaction radius
r 0'6 lattice lengths. Note that lattice constants for the m
als, such as Pt, are usually close to an angstrom. Hence
total size of the system shown in Fig. 7 can be estimated
only about 50 nanometers. The four frames in Fig. 7 disp
the spatial distribution of the adsorbate in the same syste
three subsequent moments separated by equal time inte
Dt515/kd,0 . We see that, though the fluctuations are re
tively strong, they do not destroy the basic morphology
the nonequilibrium microstructure.

V. DISCUSSION AND CONCLUSIONS

When possible experiments are considered, the ea
choice of a nonequilibrium first-order reaction, needed
observe the considered microstructures, would be the ph
desorption process. Indeed, this process can be viewed
reaction X1n→! where an adsorbed particleX interacts
with the photonn to produce a vacant surface site!. This
reaction has an effective first order. The rate constant of s
a reaction does not depend on the surface potential cause
lateral interactions between adsorbed particles if the pho
energy is significantly higher than local variations in th
potential.

The system parameters that can be varied in such an
periment are the temperature~and hence the dimensionles
interaction strength parameter« that is inversely proportiona

FIG. 7. Fluctuating coverage distributions obtained by integ
tion of the mesoscopic kinetic equation with internal noises foZ
52.23103Lr

22. The time intervals between subsequent frames
Dt515/kd,0 . Other parameters and notations are the same as in
6~b!.
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to the temperature!, the light intensity~controlling the rate
constantkr!, and the partial pressurep0 determining the ad-
sorption rate. To plan an experiment, the existence region
microstructures in terms of these system parameters sh
be discussed. Moreover, since the interaction radiusr 0 is
usually not well known, it would also be helpful to consid
how these regions depend on the variation of the interac
radius.

First we fix the temperature and consider how the beh
ior of the system is influenced by variation of the photod
orption rate constantkr . An important question is now
whether, by adjusting the partial pressure, we would be a
to enter a region where microstructures are expected. Fig
8 shows boundaries of the regions where various microst
tured phasesmay be observed if the partial pressure is a
propriately tuned.

A single or two stable uniform phases can be found
region 1. In region 2 the high-density uniform phase may
made unstable with respect to spatial modulation by an
propriate choice of the partial pressure, whereas the l
density uniform phase is always stable. In region 3 both u
form phases may be unstable and give rise to two differ
kinds of microstructures. In region 4 the system has onl
single phase, which can be nonuniform if the partial press
is chosen appropriately. In region 5 the system has one st
uniform phase at any partial pressure.

When the interaction radiusr 0 is fixed, three different
scenarios take place as the light intensity, controlling the r
constantkr , is increased. If the interaction radius exceeds
maximal radiusr max, the system has only uniform phase
~regions 1 and 5!. If it is, however, smaller thanr max, micro-
structures can be found if the photodesorption rate is su
ciently strong as compared with the rate of thermal deso
tion. As the light intensity, controlling the rate constantkr ,
is increased, microstructures first develop from the hig
density adsorbate phase~region 2!.

The subsequent evolution of the system upon further
creasing the rate constantkr depends on the magnitude of th
interaction radius. At relatively large interaction radii~close
to but still smaller thanr max! the system returns for highe
light intensities to region 1 where only uniform phases ex

-

e
ig.

FIG. 8. The diagram showing the regions where, by appropr
tuning of the partial pressure, stationary spatially modulated pha
can be found at«55. See further explanations in the text.
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However, for even shorter interaction radii the system fi
goes from region 2 into region 3. Whenkr exceeds the
threshold value denoted by the thin dashed line in Fig. 8
enters region 4 with a single spatially modulated phase
this latter region, the behavior of the considered system
not significantly different from that of the system in the a
sence of thermal desorption. Note that though Fig. 8 co
sponds to the specific choice«55, the diagram remains
qualitatively unchanged for other choices of this dimensi
less interaction parameter.

The maximal interaction radiusr max, at which the spa-
tially modulated phases are possible, depends on the
constant of thermal desorptionkd,0 and the dimensionles
interaction strength«5u0 /kBT. Figure 9 shows the depen
dence of the combinationr max(kd,0 /D)1/2 on the parameter«.
We see thatr max becomes shorter for smaller« ~at a fixed
thermal desorption rate! and vanishes at«54.

The bifurcation diagrams have been constructed in
paper using the linear stability analysis of the uniform sta
Therefore, they can only indicate where the respective u
form states should become unstable and stationary sp
modulation should develop. The nonlinear evolution of su
an instability has been followed in numerical simulations.
the one-dimensional case, formation of stationary perio
structures was always found above the instability point.
two-dimensional systems, our simulations give evidence
rich morphology of developing nonequilibrium stationa
microstructures. The typical observed patterns represe
various spot arrays and complex labyrinthine phases.
interfaces separating regions with low and high adsorb
densities in these patterns have typically the width of
interaction radius. When the system has two different n
equilibrium microstructured phases, nonuniform distrib
tions formed by large patches of these two different pha
can be formed on the surface. The boundaries separa
these patches slowly move over the surface, until the
favored microstructured phase is completely eliminated.

A detailed study of nonlinear pattern selection was no
purpose of this work. Generally, it is known that patte
selection is controlled by interactions between various gro
ing unstable modes~see, e.g.,@24#!. They should determine

FIG. 9. Dependence of the dimensionless maximum interac
radius r max(kd,0 /D)1/2, needed for the observation of microstru
tured phases, on the dimensionless interaction strength«.
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the form of the patterns that develop in the system. Mo
over, such nonlinear interactions can make the conside
bifurcations subcritical, so that they would be characteriz
by a hysteresis. We have indeed observed such subcri
behavior in our simulations.

Since the mesoscopic kinetic equation includes inter
noises, whose functional form and intensity have been
rectly determined from the underlying stochastic mas
equation of the problem, we were also able to consider
influence of fluctuations on the studied microstructures
was found that, even when the attractive interactions ext
only over a relatively small number of lattice neighbors a
the internal fluctuations are rather strong, they still do n
destroy the basic morphology of the nonequilibrium micr
structures.

We want to note that the reaction-induced microstru
tures, discussed in this paper, together with similar structu
in the reactive polymer systems represent, from the phys
point of view, a special class of patterns. Indeed, perio
stationary Turing patterns in reaction-diffusion systems h
a purely kinetic origin and their wavelength is determined
a combination of diffusion lengths for the reacting activa
and inhibitor species@25#. On the other hand, equilibrium
spatially modulated phases~see the review@26#! emerge be-
cause of the competition between attractive short-range
tential interactions and repulsive long-range potential int
actions in the system. Their wavelength is therefo
determined only by the energetic parameters and does
depend on any kinetic coefficients, such as the diffusion c
stant. The microstructures studied in this paper are, howe
produced by a competition between attractive potential in
actions between particles and the kinetic processes~i.e., dif-
fusion and reaction! in the system. This difference is the
revealed in the fact that the characteristic wavelength of s
patterns depends both on the parameters of energetic i
actions, i.e., on the interaction radius, and on the diffus
length of adsorbed particles. Of course, this physical diff
ence does not prevent similar mathematical methods f
being used in theoretical investigations of these different p
terns. As shown in the paper, the mathematical stab
analysis for the considered systems is, for example, es
tially analogous to that performed for the Turing patterns
activator-inhibitor models.

Though theoretical investigations have been performed
this study only for the systems representing adsorbates
surface chemical reactions, they may also be interesting
other systems, such as reactive polymer blends. Indeed
have effectively considered an example of a system wit
first-order phase transition where both reversible equilibri
reactions~i.e., thermal adsorption and desorption! and a non-
equilibrium reaction~such as photoinduced desorption! are
simultaneously taking place. We have found that, despite
fact that the equilibrium reactions cannot themselves cre
kinetic microstructures, they significantly influence prope
ties of the microstructures induced by the nonequilibriu
reaction.
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